These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protective mechanisms of end-ischemic cold machine perfusion in DCD liver grafts.
    Author: Schlegel A, de Rougemont O, Graf R, Clavien PA, Dutkowski P.
    Journal: J Hepatol; 2013 Feb; 58(2):278-86. PubMed ID: 23063573.
    Abstract:
    BACKGROUND & AIMS: The aim of this study was to identify protective mechanisms of cold machine perfusion in liver grafts donated after cardiac death. METHODS: Pig livers exposed to 60-min warm ischemia were cold stored for 7 h or treated after 6-h cold storage with 1-h hypothermic oxygenated perfusion (HOPE) through the portal vein. Different physical (perfusion pressure) and chemical (oxygen, mitochondrial transition pore inhibition) parameters were analyzed during machine perfusion to dissect key steps of mechanism. RESULTS: HOPE treatment led to a significant slowdown of mitochondrial respiration rate during 1-h machine perfusion. After reperfusion following low pressure HOPE, mitochondrial injury, nuclear injury, Kupffer cell activation and endothelial injury were significantly improved, as tested on an isolated liver perfusion model. In contrast, machine perfusion with deoxygenated perfusate showed no protection from hepatocyte injury and Kupffer cell activation. However, endothelial injury was also prevented by low pressure machine perfusion in the absence of oxygen. Perfusion with higher pressure provoked endothelial damage and Kupffer cell activation. CONCLUSIONS: The mechanisms of protection by hypothermic machine perfusion appear to be at least twofold. First, oxygenation under hypothermic conditions protects from mitochondrial and nuclear injury by downregulation of mitochondrial activity before reperfusion. Second, cold perfusion itself, under low pressure conditions, prevents endothelial damage, independently of oxygen.
    [Abstract] [Full Text] [Related] [New Search]