These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Roles of antioxidant enzymes in corpus luteum rescue from reactive oxygen species-induced oxidative stress.
    Author: Al-Gubory KH, Garrel C, Faure P, Sugino N.
    Journal: Reprod Biomed Online; 2012 Dec; 25(6):551-60. PubMed ID: 23063822.
    Abstract:
    Progesterone produced by the corpus luteum (CL) regulates the synthesis of various endometrial proteins required for embryonic implantation and development. Compromised CL progesterone production is a potential risk factor for prenatal development. Reactive oxygen species (ROS) play diverse roles in mammalian reproductive biology. ROS-induced oxidative damage and subsequent adverse developmental outcomes constitute important issues in reproductive medicine. The CL is considered to be highly exposed to locally produced ROS due to its high blood vasculature and steroidogenic activity. ROS-induced apoptotic cell death is involved in the mechanisms of CL regression that occurs at the end of the non-fertile cycle. Luteal ROS production and propagation depend upon several regulating factors, including luteal antioxidants, steroid hormones and cytokines, and their crosstalk. However, it is unknown which of these factors have the greatest contribution to the maintenance of CL integrity and function during the oestrous/menstrual cycle. There is evidence to suggest that antioxidants play important roles in CL rescue from luteolysis when pregnancy ensues. As luteal phase defect impacts fertility by preventing implantation and early conceptus development in livestock and humans, this review attempts to address the importance of ROS-scavenging antioxidant enzymes in the control of mammalian CL function and integrity. The corpus luteum (CL) is a transient endocrine organ that develops after ovulation from the ovulated follicle during each reproductive cycle. The main function of the CL is the production and secretion of progesterone which is necessary for embryonic implantation and development. Compromised CL progesterone production is a potential risk factor for prenatal development and pregnancy outcomes. Reactive oxygen species (ROS), which are natural by-products of cellular respiration and metabolism, play diverse roles in mammalian reproductive biology. ROS-induced oxidative damage and subsequent development of adverse pregnancy outcomes constitute important issues in reproductive medicine. Before the end of the first trimester, a high rate of human and animal conceptions end in spontaneous abortion and most of these losses occur at the time of implantation in association with ROS-induced oxidative damage. Every cell in the body is normally able to defend itself against the oxidative damage caused by the ROS. The cellular antioxidant enzymes constitute the first line of defence against the toxic effects of ROS. The CL is considered to be highly exposed to locally produced ROS due to its high blood vasculature and metabolic activity. There is now evidence to suggest that cellular antioxidants play important roles in CL rescue from regression when pregnancy ensues. As defective CL function impacts fertility by preventing implantation and early conceptus development in livestock and humans, this review attempts to address the importance of antioxidant enzymes in the control of mammalian CL function and integrity.
    [Abstract] [Full Text] [Related] [New Search]