These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Auditory streaming by phase relations between components of harmonic complexes: a comparative study of human subjects and bird forebrain neurons.
    Author: Dolležal LV, Itatani N, Günther S, Klump GM.
    Journal: Behav Neurosci; 2012 Dec; 126(6):797-808. PubMed ID: 23067380.
    Abstract:
    Auditory streaming describes a percept in which a sequential series of sounds either is segregated into different streams or is integrated into one stream based on differences in their spectral or temporal characteristics. This phenomenon has been analyzed in human subjects (psychophysics) and European starlings (neurophysiology), presenting harmonic complex (HC) stimuli with different phase relations between their frequency components. Such stimuli allow evaluating streaming by temporal cues, as these stimuli only vary in the temporal waveform but have identical amplitude spectra. The present study applied the commonly used ABA- paradigm (van Noorden, 1975) and matched stimulus sets in psychophysics and neurophysiology to evaluate the effects of fundamental frequency (f₀), frequency range (f(LowCutoff)), tone duration (TD), and tone repetition time (TRT) on streaming by phase relations of the HC stimuli. By comparing the percept of humans with rate or temporal responses of avian forebrain neurons, a neuronal correlate of perceptual streaming of HC stimuli is described. The differences in the pattern of the neurons' spike rate responses provide for a better explanation for the percept observed in humans than the differences in the temporal responses (i.e., the representation of the periodicity in the timing of the action potentials). Especially for HC stimuli with a short 40-ms duration, the differences in the pattern of the neurons' temporal responses failed to represent the patterns of human perception, whereas the neurons' rate responses showed a good match. These results suggest that differential rate responses are a better predictor for auditory streaming by phase relations than temporal responses.
    [Abstract] [Full Text] [Related] [New Search]