These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: HSP90 inhibition induces cytotoxicity via down-regulation of Rad51 expression and DNA repair capacity in non-small cell lung cancer cells.
    Author: Ko JC, Chen HJ, Huang YC, Tseng SC, Weng SH, Wo TY, Huang YJ, Chiu HC, Tsai MS, Chiou RY, Lin YW.
    Journal: Regul Toxicol Pharmacol; 2012 Dec; 64(3):415-24. PubMed ID: 23069143.
    Abstract:
    Heat shock protein 90 (HSP90) is an exciting new target in cancer therapy. Repair protein Rad51 is involved in protecting non-small cell lung cancer (NSCLC) cell lines against chemotherapeutic agent-induced cytotoxicity. This study investigated the role of Rad51 expression in HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG)-induced cytotoxicity in two NSCLC cell lines, A549 and H1975. The 17-AAG treatment decreased cellular Rad51 protein and mRNA levels and phosphorylated MKK1/2-ERK1/2 protein levels, and disrupted the HSP90 and Rad51 interaction. This triggered Rad51 protein degradation through the 26S proteasome pathway. The 17-AAG treatment also decreased the NSCLC cells' DNA repair capacity, which was restored by the forced expression of the Flag-Rad51 vector. Specific inhibition of Rad51 expression by siRNA further enhanced 17-AAG-induced cytotoxicity. In contrast, enhanced ERK1/2 activation by the constitutively active MKK1/2 (MKK1/2-CA) vector significantly restored the 17-AAG-reduced Rad51 protein levels and cell viability. Arachidin-1, an antioxidant stilbenoid, further decreased Rad51 expression and augmented the cytotoxic effect and growth inhibition of 17-AAG. The 17-AAG and arachidin-1-induced synergistic cytotoxic effects and decreased DNA repair capacity were abrogated in lung cancer cells with MKK1/2-CA or Flag-Rad51 expression vector transfection. In conclusion, HSP90 inhibition induces cytotoxicity by down-regulating Rad51 expression and DNA repair capacity in NSCLC cells.
    [Abstract] [Full Text] [Related] [New Search]