These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Selenium significantly inhibits adipocyte hypertrophy and abdominal fat accumulation in OLETF rats via induction of fatty acid β-oxidation.
    Author: Kim JE, Choi SI, Lee HR, Hwang IS, Lee YJ, An BS, Lee SH, Kim HJ, Kang BC, Hwang DY.
    Journal: Biol Trace Elem Res; 2012 Dec; 150(1-3):360-70. PubMed ID: 23076603.
    Abstract:
    A combination of selenium (Se) with other trace element is associated with partially modulate fatty acid distribution as well as reduction of the body weight and feed efficiency. To investigate whether or not Se treatment has an impact on lipid metabolism, we examined the levels of lipid metabolism-related factors, including abdominal fat, adiponectin, cholesterol, very long chain dehydrogenase (VLCAD), and medium chain acyl-CoA dehydrogenase (MCAD) in 20-week-old Otsuka Long-Evans Tokushima Fatty (OLETF) rats following sodium selenite treatment for 2 weeks. Herein, we observed that (a) Se treatment induced insulin-like effects by lowering the serum glucose level in rats; (b) Se-treated rats showed significance values decreases in abdominal fat mass, adipocyte size, and adiponectin, which are associated with lipid metabolism; (c) Se treatment led to reduced levels of cholesterol, triglycerides, low-density lipoprotein (LDL), and high-density lipoprotein (HDL) cholesterol; (d) fat tissue in Se-treated rats displayed significantly lower expression of adipocyte marker genes along with increased expression of VLCAD and MCAD; and (e) fatty liver formation and β-oxidation gene expression were both significantly reduced in liver tissue of Se-treated rats. Therefore, our results suggest that Se may induce inhibition of adipocyte hypertrophy and abdominal fat accumulation along with suppression of fatty liver formation by the differential regulation of the gene expression for fatty acid β-oxidation in the OLETF model.
    [Abstract] [Full Text] [Related] [New Search]