These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Benzimidazolones enhance the function of epithelial Na⁺ transport.
    Author: Laube M, Kimpel SU, Dietl P, Thome UH, Wittekindt OH.
    Journal: Br J Pharmacol; 2013 Mar; 168(6):1329-40. PubMed ID: 23083067.
    Abstract:
    BACKGROUND AND PURPOSE: Pharmacological enhancement of vectorial Na⁺ transport may be useful to increase alveolar fluid clearance. Herein, we investigated the influence of the benzimidazolones 1-ethyl-1,3-dihydro-2-benzimidazolone (1-EBIO), 5,6-dichloro-1-EBIO (DC-EBIO) and chlorzoxazone on vectorial epithelial Na⁺ transport. EXPERIMENTAL APPROACH: Effects on vectorial Na⁺ transport and amiloride-sensitive apical membrane Na⁺ permeability were determined by measuring short-circuit currents (I(SC)) in rat fetal distal lung epithelial (FDLE) monolayers. Furthermore, amiloride-sensitive membrane conductance and the open probability of epithelial Na⁺ channels (ENaC) were determined by patch clamp experiments using A549 cells. KEY RESULTS: I(SC) was increased by approximately 50% after addition of 1-EBIO, DC-EBIO and chlorzoxazone. With permeabilized basolateral membranes in the presence of a 145:5 apical to basolateral Na⁺ gradient, the benzimidazolones markedly increased amiloride-sensitive I(SC). 5-(N-Ethyl-N-isopropyl)amiloride-induced inhibition of I(SC) was not affected. The benzamil-sensitive I(SC) was increased in benzimidazolone-stimulated monolayers. Pretreating the apical membrane with amiloride, which inhibits ENaC, completely prevented the stimulating effects of benzimidazolones on I(SC). Furthermore, 1-EBIO (1 mM) and DC-EBIO (0.1 mM) significantly increased (threefold) the open probability of ENaC without influencing current amplitude. Whole cell measurements showed that DC-EBIO (0.1 mM) induced an amiloride-sensitive increase in membrane conductance. CONCLUSION AND IMPLICATIONS: Benzimidazolones have a stimulating effect on vectorial Na⁺ transport. The antagonist sensitivity of this effect suggests the benzimidazolones elicit this action by activating the highly selective ENaC currents. Thus, the results demonstrate a possible new strategy for directly enhancing epithelial Na⁺ transport.
    [Abstract] [Full Text] [Related] [New Search]