These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Auto-initialized cascaded level set (AI-CALS) segmentation of bladder lesions on multidetector row CT urography. Author: Hadjiiski L, Chan HP, Caoili EM, Cohan RH, Wei J, Zhou C. Journal: Acad Radiol; 2013 Feb; 20(2):148-55. PubMed ID: 23085411. Abstract: RATIONALE AND OBJECTIVES: To develop a computerized system for segmentation of bladder lesions on computed tomography urography (CTU) scans for detection and characterization of bladder cancer. MATERIALS AND METHODS: We have developed an auto-initialized cascaded level set method to perform bladder lesion segmentation. The segmentation performance was evaluated on a preliminary dataset including 28 CTU scans from 28 patients collected retrospectively with institutional review board approval. The bladders were partially filled with intravenous contrast material. The lesions were located fully or partially within the contrast-enhanced area or in the non-contrast-enhanced area of the bladder. An experienced abdominal radiologist marked 28 lesions (14 malignant and 14 benign) with bounding boxes that served as input to the automated segmentation system and assigned a difficulty rating on a scale of 1 to 5 (5 = most subtle) to each lesion. The contours from automated segmentation were compared to three-dimensional contours manually drawn by the radiologist. Three performance metric measures were used for comparison. In addition, the automated segmentation quality was assessed by an expert panel of two experienced radiologists, who provided quality ratings of the contours on a scale from 1 to 10 (10 = excellent). RESULTS: The average volume intersection ratio, the average absolute volume error, and the average distance measure were 67.2 ± 16.9%, 27.3 ± 26.9%, and 2.89 ± 1.69 mm, respectively. Of the 28 segmentations, 18 were given quality ratings of 8 or above. The average rating was 7.9 ± 1.5. The average quality ratings for lesions with difficulty ratings of 1, 2, 3, and 4 were 8.8 ± 0.9, 7.9 ± 1.8, 7.4 ± 0.9, and 6.6 ± 1.5, respectively. CONCLUSION: Our preliminary study demonstrates the feasibility of using the three-dimensional level set method for segmenting bladder lesions in CTU scans.[Abstract] [Full Text] [Related] [New Search]