These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protective effect of puerarin against beta-amyloid-induced oxidative stress in neuronal cultures from rat hippocampus: involvement of the GSK-3β/Nrf2 signaling pathway. Author: Zou Y, Hong B, Fan L, Zhou L, Liu Y, Wu Q, Zhang X, Dong M. Journal: Free Radic Res; 2013 Jan; 47(1):55-63. PubMed ID: 23088308. Abstract: Current evidence suggests that amyloid beta (Aβ) peptides may play a major role in the pathogenesis of Alzheimer's disease in part by eliciting oxidative stress. Puerarin, a major isoflavone glycoside from Kudzu root (Pueraria lobata), has been reported to exert estrogen-like and antioxidant activities. The central hypothesis guiding this study is that puerarin will prevent or at least markedly attenuate Aβ(25-35)-induced excess production of reactive oxygen species (ROS) by interrupting glycogen synthase kinase-3β (GSK-3β) signaling. In this study, we demonstrate that pretreatment of primary hippocampal neurons with puerarin significantly reduced Aβ(25-35)-induced oxidative stress characterized by scavenging of ROS and inhibiting lipid peroxidation. Puerarin induced expression of nuclear Nrf2 protein, but not in the Nrf2 mRNA level, and increased heme oxygenase-1 (HO-1) levels at levels of transcription and translation. Puerarin-induced Serine 9 phosphorylation of GSK-3β was blocked by lithium chloride treatment in primary hippocampal neurons, indicating the participation of the GSK-3β inactivation. This protective effect was partially reversed when GSK-3β were blocked by the chemical inhibitors such as lithium chloride. These results suggest puerarin as a phytoestrogen with potential of a possible therapeutic agent in neurodegenerative diseases involving oxidative stress.[Abstract] [Full Text] [Related] [New Search]