These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Possible involvement of endocannabinoids in the increase of morphine consumption in maternally deprived rat. Author: Naudon L, Piscitelli F, Giros B, Di Marzo V, Daugé V. Journal: Neuropharmacology; 2013 Feb; 65():193-9. PubMed ID: 23089638. Abstract: Whether adolescent exposure to chronic delta-9-tetrahydrocannabinol (THC) facilitates progression to opioid consumption is still controversial. In a maternal deprivation model (3 h daily from postnatal day 1-14), we previously reported that adolescent exposure to chronic THC blocks morphine dependence in maternally deprived (D) rats. Owing to the existence of a functional cross-interaction between the opioid and cannabinoid systems in reward, we evaluated if the vulnerability to opiate reward in D rats, may involve an alteration of the endocannabinoid system. Anandamide and 2-arachidonoylglycerol (2-AG), were quantified in the striatum and mesencephalon of adolescent and adult D and non-deprived (animal facility rearing, AFR) rats by isotope dilution liquid chromatography-mass spectrometry. Oral morphine self-administration behavior was analyzed for 14 weeks, 24 days after chronic injection of the cannabinoid CB1 receptor antagonist/inverse agonist, SR141716A (3 mg/kg) for 2 weeks during adolescence (PND 35-48). Adolescent D rats exhibited higher basal levels of anandamide than adolescent AFR rats in the nucleus accumbens (38%), the caudate-putamen nucleus (62%) and the mesencephalon (320%), whereas adult D rats showed an increase of anandamide and 2-AG levels in the nucleus accumbens (50% and 24%, respectively) and of 2-AG in the caudate-putamen nucleus (48%), compared to adult AFR rats. Chronic administration of SR141716A to adolescent D rats blocked the escalation behavior in the morphine consumption test. Our data suggest that altered brain endocannabinoid levels may contribute to the escalation behavior in the morphine consumption test in a maternal deprivation model.[Abstract] [Full Text] [Related] [New Search]