These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Improving the spatial resolution of atmospheric polycyclic aromatic hydrocarbons using passive air samplers in a multi-industrial city.
    Author: Choi SD, Kwon HO, Lee YS, Park EJ, Oh JY.
    Journal: J Hazard Mater; 2012 Nov 30; 241-242():252-8. PubMed ID: 23092614.
    Abstract:
    The source-receptor relationship of polycyclic aromatic hydrocarbons (PAHs) in the industrial city has been generally investigated using active air samplers (AAS), but they only provide low spatial resolution data. In this study, the spatial resolution of PAHs was improved by the use of polyurethane foam based passive air samplers (PUF-PAS). We deployed 40 passive air samplers in duplicate at 20 sites in the largest industrial city of Ulsan, South Korea during winter (January 7-February 25, 2011). Among the 16 US-EPA priority PAHs, 13 compounds excluding naphthalene, acenaphthylene, and acenaphthene were selected for the calculation of air concentrations. The level of gaseous ∑(13)PAHs in Ulsan (mean: 43 ng/m(3)) was not as high as we expected due to prevailing winds which transported large amounts of PAHs to the East Sea. The spatial distribution of PAHs, principal component analysis, and diagnostic ratios suggested the influence of PAH emissions from industrial complexes to the surrounding areas. This study demonstrated that the source-receptor relationship of PAHs in the industrial area can be more clearly understood using passive air samplers.
    [Abstract] [Full Text] [Related] [New Search]