These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Linking epigenetics to lipid metabolism: focus on histone deacetylases.
    Author: Ferrari A, Fiorino E, Giudici M, Gilardi F, Galmozzi A, Mitro N, Cermenati G, Godio C, Caruso D, De Fabiani E, Crestani M.
    Journal: Mol Membr Biol; 2012 Nov; 29(7):257-66. PubMed ID: 23095054.
    Abstract:
    A number of recent studies revealed that epigenetic modifications play a central role in the regulation of lipid and of other metabolic pathways such as cholesterol homeostasis, bile acid synthesis, glucose and energy metabolism. Epigenetics refers to aspects of genome functions regulated in a DNA sequence-independent fashion. Chromatin structure is controlled by epigenetic mechanisms through DNA methylation and histone modifications. The main modifications are histone acetylation and deacetylation on specific lysine residues operated by two different classes of enzymes: Histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. The interaction between these enzymes and histones can activate or repress gene transcription: Histone acetylation opens and activates chromatin, while deacetylation of histones and DNA methylation compact chromatin making it transcriptionally silent. The new evidences on the importance of HDACs in the regulation of lipid and other metabolic pathways will open new perspectives in the comprehension of the pathophysiology of metabolic disorders.
    [Abstract] [Full Text] [Related] [New Search]