These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of acidosis and alkalosis on hypoxic pulmonary vasoconstriction in dogs. Author: Brimioulle S, Lejeune P, Vachiery JL, Leeman M, Melot C, Naeije R. Journal: Am J Physiol; 1990 Feb; 258(2 Pt 2):H347-53. PubMed ID: 2309902. Abstract: We studied the effects of metabolic and respiratory acidosis (pH 7.20) and alkalosis (pH 7.60) on pulmonary vascular tone in 32 pentobarbital-anesthetized dogs ventilated with hyperoxia (inspired oxygen fraction, FIO2 0.40) and with hypoxia (FIO2 0.10). Ventilation, pulmonary capillary wedge pressure (Ppw), and cardiac output (3 l.min-1.m-2) were maintained constant to prevent passive changes in pulmonary arterial pressure (Ppa). Metabolic acidosis and alkalosis were induced with HCl (2 mmol.kg-1.h-1) and NaHCO3-Na2CO3 (5 mmol.kg-1.h-1) infusions, respectively, and respiratory acidosis and alkalosis by modifying the inspiratory CO2 fraction. The hypoxia-induced rise in Ppa-Ppw gradient increased from 5 to 9 mmHg in metabolic acidosis (P less than 0.001), decreased from 6 to 1 mmHg in metabolic alkalosis (P less than 0.001), remained unchanged in respiratory acidosis, and decreased from 5 to 2 mmHg in respiratory alkalosis (P less than 0.001). Linear relationships were found between pH and Ppa-Ppw gradients. These data indicate that in intact anesthetized dogs, metabolic acidosis and alkalosis, respectively, enhance and reverse hypoxic pulmonary vasoconstriction (HPV). Respiratory acidosis did not affect HPV and respiratory alkalosis blunted HPV, which suggests an pH-independent vasodilating effect of CO2.[Abstract] [Full Text] [Related] [New Search]