These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of fatty acid elongation system in porcine neutrophil microsomes. Author: Kugi M, Yoshida S, Takeshita M. Journal: Biochim Biophys Acta; 1990 Mar 12; 1043(1):83-90. PubMed ID: 2310764. Abstract: Microsomes purified from porcine neutrophils containing the fatty acid chain-elongation system for long- and very-long-chain fatty acyl-CoAs, and several enzymatic characters for the elongation of palmitoyl-CoA (16:0-CoA) and arachidoyl-CoA (20:0-CoA) were examined. The heat-inactivation profile for the elongation of 16:0-CoA was different from that of 20:0-CoA, suggesting the presence of different enzyme systems for palmitoyl-CoA and arachidoyl-CoA. Contrary to the elongation system of brain microsomes, the successive synthesis of lignoceric acid (24:0) from 20:0-CoA at 60 microM was not prominent under normal conditions in the neutrophil microsomes. The synthesis of behenic acid (22:0) was slightly inhibited by 0.5 mM N-ethylmaleimide (NEM) present in the assay mixture, whereas the pre-treatment of microsomes with 0.5 mM NEM largely inhibited the synthesis of 22:0 from 20:0-CoA. The synthesis of 24:0, however, was enhanced by 0.5 mM NEM in the elongation of 20:0-CoA and the rate of 24:0 synthesis became dominant over the synthesis of 22:0. These results suggested that the elongation enzyme for very-long-chain fatty acyl-CoA, especially for 20:0-CoA elongation to 22:0 in the neutrophil microsomes contained NEM-sensitive sulfhydryl groups in the active center and the mechanism for the synthesis of 24:0 through successive elongation from 20:0-CoA was different from that of 22:0, as the former was enhanced by NEM whereas the latter was strongly inhibited.[Abstract] [Full Text] [Related] [New Search]