These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pharmacological inhibition of adipocyte fatty acid binding protein alleviates both acute liver injury and non-alcoholic steatohepatitis in mice.
    Author: Hoo RL, Lee IP, Zhou M, Wong JY, Hui X, Xu A, Lam KS.
    Journal: J Hepatol; 2013 Feb; 58(2):358-64. PubMed ID: 23108115.
    Abstract:
    BACKGROUND & AIMS: Adipocyte fatty acid binding protein (A-FABP) is a key mediator of inflammatory response in macrophages. Increased hepatic expression and circulating levels of A-FABP have been observed in patients with non-alcoholic fatty liver disease (NAFLD). Here, we investigated the role of A-FABP in both lipopolysaccaride (LPS)-induced acute liver injury and high fat high cholesterol (HFHC) diet-induced NAFLD in mice. METHODS: Mice with LPS-induced acute liver injury and HFHC diet-induced obesity were treated with the A-FABP inhibitor BMS309403. Liver tissues of the mice were analyzed by immunohistochemistry, Western blot or real-time PCR. RESULTS: A-FABP expression in Kupffer cells was significantly elevated in mice with LPS-induced acute liver injury and HFHC diet-induced obesity, as compared to their healthy controls. Pretreatment of mice with BMS309403 led to a diminished LPS-induced elevation in serum levels of alanine transaminase and hepatic production of pro-inflammatory cytokines. Likewise, chronic treatment of HFHC diet-induced obese mice with BMS309403 ameliorated hepatic steatosis, macrophage infiltration, and cellular ballooning of hepatocytes. Such improvements in liver function and morphology were accompanied by significantly decreased activation of both c-Jun and NF-κB. Pretreatment with BMS309403 suppressed both LPS- and palmitate-induced pro-inflammatory responses in isolated rat Kupffer cells. Adenovirus-mediated ectopic expression of A-FABP alone was sufficient to induce liver injury and inflammation in mice. CONCLUSIONS: These findings suggest that A-FABP is an important contributor to both LPS-induced acute liver injury and diet-induced NAFLD by potentiating inflammation in Kupffer cells. Pharmacological inhibition of A-FABP may represent a promising modality for obesity-related non-alcoholic steatohepatitis.
    [Abstract] [Full Text] [Related] [New Search]