These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Low dietary folate and methylenetetrahydrofolate reductase deficiency may lead to pregnancy complications through modulation of ApoAI and IFN-γ in spleen and placenta, and through reduction of methylation potential.
    Author: Mikael LG, Pancer J, Jiang X, Wu Q, Caudill M, Rozen R.
    Journal: Mol Nutr Food Res; 2013 Apr; 57(4):661-70. PubMed ID: 23112124.
    Abstract:
    SCOPE: Genetic or nutritional disturbances in folate metabolism lead to hyperhomocysteinemia and adverse reproductive outcomes. Folate-dependent homocysteine remethylation is required for methylation reactions and may influence choline/betaine metabolism. Hyperhomocysteinemia has been suggested to play a role in inflammation. The goal of this study was to determine whether folate-related pregnancy complications could be due to altered expression of some inflammatory mediators or due to disturbances in methylation intermediates. METHODS AND RESULTS: Pregnant mice with or without a deficiency of methylenetetrahydrofolate reductase (MTHFR) were fed control diets or folate-deficient (FD) diets; tissues were collected at embryonic day 14.5. FD decreased plasma phosphocholine and increased plasma glycerophosphocholine and lysophosphatidylcholine. Liver betaine, phosphocholine, and S-adenosylmethionine:S-adenosylhomocysteine ratios were reduced in FD. In liver, spleen, and placenta, the lowest levels of apolipoprotein AI (ApoAI) were observed in Mthfr(+/-) mice fed FD. Increased interferon-gamma (IFN-γ) was observed in spleen and placentae due to FD or Mthfr genotype. Plasma homocysteine correlated negatively with liver and spleen ApoAI, and positively with IFN-γ. CONCLUSION: Low dietary folate or Mthfr deficiency during pregnancy may result in adverse pregnancy outcomes by altering expression of the inflammatory mediators ApoAI and IFN-γ in spleen and placenta. Disturbances in choline metabolism or methylation reactions may also play a role.
    [Abstract] [Full Text] [Related] [New Search]