These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Balanced crystalloid compared with balanced colloid solution using a goal-directed haemodynamic algorithm.
    Author: Feldheiser A, Pavlova V, Bonomo T, Jones A, Fotopoulou C, Sehouli J, Wernecke KD, Spies C.
    Journal: Br J Anaesth; 2013 Feb; 110(2):231-40. PubMed ID: 23112214.
    Abstract:
    BACKGROUND: Controversy exists regarding the optimal i.v. fluids for use with a goal-directed haemodynamic algorithm. METHODS: In a double-blind pilot study, we randomly assigned 50 patients with primary ovarian cancer undergoing cytoreductive surgery to receive either balanced crystalloid or balanced starch (HES, 130/0.4, 6%) solutions up to the dose limit (50 ml kg(-1)). Fluids were administered to optimize stroke volume measured by oesophageal Doppler within a goal-directed haemodynamic algorithm. RESULTS: Baseline subject characteristics were similar in both groups. The balanced HES solution maintained stroke volume (P=0.012) better with administration of less fluid. Subjects in the colloid group reached the dose limits of the study medication less frequently (92% vs 62%, P=0.036) and later (2:26 vs 3:33 h, P=0.006) and also required less transfusion of fresh-frozen plasma units (6.0 vs 3.5 units, P=0.035) compared with the crystalloid group. Intra- and postoperative urine output and perioperative plasma levels of creatinine and neutrophil gelatinase-associated lipocalin as renal injury marker were similar in both groups. No differences in the length of intensive care unit and hospital stay were found. CONCLUSIONS: Using a goal-directed haemodynamic algorithm to optimize stroke volume, a balanced HES solution is associated with better haemodynamic stability and reduced need for fresh-frozen plasma. There were no signs of renal impairment by colloid solutions when fluid administration is targeted to optimize cardiac preload.
    [Abstract] [Full Text] [Related] [New Search]