These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Altered synthesis of the 26-kDa heat stress protein family and thermotolerance in cell lines with elevated levels of calcium-binding proteins. Author: Evans DP, Simonette RA, Rasmussen CD, Means AR, Tomasovic SP. Journal: J Cell Physiol; 1990 Mar; 142(3):615-27. PubMed ID: 2312618. Abstract: Using a bovine papilloma virus-based vector, mouse mammary adenocarcinoma cells have been transformed to express elevated amounts of functional calmodulin (CaM) (Rasmussen and Means, 1987) and another Ca2(+)-binding protein, parvalbumin (PV) (Rasmussen and Means, 1989) that is not normally synthesized in these cells. Parental cells (C127) and cells transformed by the vector alone (BPV-1), the vector containing a CaM gene (CM-1), or the vector containing parvalbumin (PV-1) were used to study the effect of increased synthesis of Ca2(+)-binding proteins on heat-stress protein (HSP) synthesis and cell survival following heating at 43 degrees C. The induction, stability, and repression of the synthesis of most HSPs after 43 degrees C heating was not significantly affected by increased amounts of Ca2(+)-binding proteins, but the rate of synthesis of all three isoforms of the 26-kDa HSP (HSP26) was greatly reduced. C127 cells, which have about one half as much CaM as do BPV-1 cells, synthesized the most HSP26. CM-1 cells, which have more than fourfold higher levels of CaM than do BPV-1 cells, had a rate of synthesis of HSP26 approaching that of unheated cells. BPV-1 cells, with a two-fold increase in CaM, were intermediate in HSP26 synthesis. This effect on HSP26 synthesis may be largely related to the Ca2(+)-binding capacity of CaM rather than to a specific CaM-regulated function, since PV-1 cells also showed reduced rates of HSP26 synthesis. Survival experiments showed that reduced HSP26 synthesis in cells with increased amounts of Ca2(+)-binding proteins did not significantly alter intrinsic resistance to continuous 43 degrees C heating. Thermotolerance was not reduced and appeared to develop more rapidly in CM-1 and PV-1 cells. These results suggest that (1) the signal for HSP26 synthesis can be largely abrogated by elevated Ca2+ binding protein levels, and (2) if these HSPs are involved in thermotolerance development, that function may be associated with intracellular Ca2+ homeostasis.[Abstract] [Full Text] [Related] [New Search]