These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Elucidation of the O(1D) + HF → F + OH mechanism by means of quasiclassical trajectories.
    Author: Jambrina PG, Montero I, Aoiz FJ, Aldegunde J, Alvariño JM.
    Journal: Phys Chem Chem Phys; 2012 Dec 21; 14(47):16338-48. PubMed ID: 23131899.
    Abstract:
    The dynamics and mechanism of the O((1)D) + HF → F + OH reaction have been studied through quasi-classical trajectory calculations carried out on the 1(1)A' Potential Energy Surface (PES) fitted by Gómez-Carrasco et al. [Chem. Phys. Lett., 2007, 435, 188]. The influence of the collision energy and the initial rovibrational state on the reaction has been considered. As a result of this study, we conclude that for v = 0 the reactive collisions take place exclusively through an indirect mechanism that involves a long-lived complex. Interestingly and somewhat unexpectedly for a barrierless reaction, vibrational excitation causes a large enhancement of the reactivity due to the concurrence of a direct abstraction mechanism. Unlike other reactions also taking place on a barrierless PES featuring deep wells, no insertion mechanism is observed in O((1)D) + HF reactive collisions.
    [Abstract] [Full Text] [Related] [New Search]