These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Transporter gene expression in human head and neck squamous cell carcinoma and associated epigenetic regulatory mechanisms.
    Author: Zolk O, Schnepf R, Muschler M, Fromm MF, Wendler O, Traxdorf M, Iro H, Zenk J.
    Journal: Am J Pathol; 2013 Jan; 182(1):234-43. PubMed ID: 23137910.
    Abstract:
    Expression levels of membrane transporters may affect the disposition, and thereby treatment efficacy, of anticancer drugs in human head and neck squamous cell carcinoma (HNSCC). Herein, we analyzed the gene expression profile of membrane transporters in HNSCC. In addition, we evaluated the mechanisms of transporter regulation in HNSCC and focused on the role of the nuclear pregnane X receptor (or NR1I2) and epigenetic mechanisms. Real-time RT-PCR revealed a significantly increased mRNA expression of membrane transporters SLCO1A2 and SLCO1B3 and a significantly decreased expression of transporters SLCO2B1, SLCO2A1, and ABCC3 in human HNSCC tumors compared with adjacent normal mucosa. An association between SLCO2B1 mRNA levels in tumors and 5-year survival of patients with HNSCC was observed (χ2 = 6.59, P = 0.010). Bisulfite sequencing revealed that promoter CpG islands of ABCC3 and SLCO2A1 were not hypermethylated, indicating that these genes were not epigenetically silenced in HNSCC tumors. In HNSCC-derived cell lines, transcript expression of transporters (e.g., ABCC3 or SLCO2A1; P < 0.001 for both) and NR1I2 (P < 0.001) was markedly induced by the DNA methyltransferase inhibitor, decitabine. Cotreatment with the prototypical pregnane X receptor activator, rifampicin, significantly reversed decitabine-induced ABCC3 and SLCO2A1 expression. In summary, the expression of drug transporters (i) is markedly changed in HNSCC tumor tissues compared with normal mucosa, (ii) might be predictive of the outcome of patients with HNSCC, and (iii) is affected by novel epigenetic therapies and is further modulated by nuclear receptor-mediated mechanisms.
    [Abstract] [Full Text] [Related] [New Search]