These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High-dose sodium selenite toxicity cannot be prevented by the co-administration of pharmacological levels of epigallocatechin-3-gallate which in turn aggravates the toxicity. Author: Sun K, Wu S, Wang Y, Wan X, Thompson HJ, Zhang J. Journal: Food Chem Toxicol; 2013 Feb; 52():36-41. PubMed ID: 23137956. Abstract: Selenium, an essential trace element, can also be toxic at higher levels of exposure. Several lines of evidence show epigallocatechin-3-gallate (EGCG), a predominant component of green tea catechins with numerous health benefits, can ameliorate the toxicity of many agents. A proof-in-principle experiment was conducted to determine if EGCG would ameliorate sodium selenite-induced growth suppression. Mice were intraperitioneally injected with selenite once daily for five days at a dose of 3 mg Se/kg, which fully suppressed animal growth but did not cause death. Surprisingly the co-administration of the selenite and nontoxic doses of EGCG (10, 20 and 40 mg/kg, intraperitioneally) resulted in the mortality of treated mice in a dose and time-dependent manner (33.3%, 100% and 100%, respectively). EGCG-selenite induced lethality did not result from enhanced selenium accumulation but appeared to involve the suppression of a selenite-induced adaptive response as evidenced by hepatic glutathione S-transferase activity. While EGCG has been reported to ameliorate the toxicity of some agents, the induction of mortality by combined treatment with pharmacological doses of selenium and EGCG is a previously unrecognized synergism that must be considered not only in the remediation of high environmental selenium exposures but also in the development of pharmaceuticals and nutriceuticals.[Abstract] [Full Text] [Related] [New Search]