These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cardiac baroreflex function and dynamic cerebral autoregulation in elderly Masters athletes. Author: Aengevaeren VL, Claassen JA, Levine BD, Zhang R. Journal: J Appl Physiol (1985); 2013 Jan 15; 114(2):195-202. PubMed ID: 23139365. Abstract: Cerebral blood flow (CBF) is stably maintained through the combined effects of blood pressure (BP) regulation and cerebral autoregulation. Previous studies suggest that aerobic exercise training improves cardiac baroreflex function and beneficially affects BP regulation, but may negatively affect cerebral autoregulation. The purpose of this study was to reveal the impact of lifelong exercise on cardiac baroreflex function and dynamic cerebral autoregulation (CA) in older adults. Eleven Masters athletes (MA) (8 men, 3 women; mean age 73 ± 6 yr; aerobic training >15 yr) and 12 healthy sedentary elderly (SE) (7 men, 5 women; mean age 71 ± 6 yr) participated in this study. BP, CBF velocity (CBFV), and heart rate were measured during resting conditions and repeated sit-stand maneuvers to enhance BP variability. Baroreflex gain was assessed using transfer function analysis of spontaneous changes in systolic BP and R-R interval in the low frequency range (0.05-0.15 Hz). Dynamic CA was assessed during sit-stand-induced changes in mean BP and CBFV at 0.05 Hz (10 s sit, 10 s stand). Cardiac baroreflex gain was more than doubled in MA compared with SE (MA, 7.69 ± 7.95; SE, 3.18 ± 1.29 ms/mmHg; P = 0.018). However, dynamic CA was similar in the two groups (normalized gain: MA, 1.50 ± 0.56; SE, 1.56 ± 0.42% CBFV/mmHg; P = 0.792). These findings suggest that lifelong exercise improves cardiac baroreflex function, but does not alter dynamic CA. Thus, beneficial effects of exercise training on BP regulation can be achieved in older adults without compromising dynamic regulation of CBF.[Abstract] [Full Text] [Related] [New Search]