These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Quantification of muscle fat in patients with low back pain: comparison of multi-echo MR imaging with single-voxel MR spectroscopy. Author: Fischer MA, Nanz D, Shimakawa A, Schirmer T, Guggenberger R, Chhabra A, Carrino JA, Andreisek G. Journal: Radiology; 2013 Feb; 266(2):555-63. PubMed ID: 23143025. Abstract: PURPOSE: To compare lumbar muscle fat-signal fractions derived from three-dimensional dual gradient-echo magnetic resonance (MR) imaging and multiple gradient-echo MR imaging with fractions from single-voxel MR spectroscopy in patients with low back pain. MATERIALS AND METHODS: This prospective study had institutional review board approval, and written informed consent was obtained from all study participants. Fifty-six patients (32 women; mean age, 52 years ± 15 [standard deviation]; age range, 20-79 years) with low back pain underwent standard 1.5-T MR imaging, which was supplemented by dual-echo MR imaging, multi-echo MR imaging, and MR spectroscopy to quantify fatty degeneration of bilateral lumbar multifidus muscles in a region of interest at the intervertebral level of L4 through L5. Fat-signal fractions were determined from signal intensities on fat- and water-only images from both imaging data sets (dual-echo and multi-echo fat-signal fractions without T2* correction) or directly obtained, with additional T2* correction, from multi-echo MR imaging. The results were compared with MR spectroscopic fractions. The Student t test and Bland-Altman plots were used to quantify agreement between fat-signal fractions derived from imaging and from spectroscopy. RESULTS: In total, 102 spectroscopic measurements were obtained bilaterally (46 of 56) or unilaterally (10 of 56). Mean spectroscopic fat-signal fraction was 19.6 ± 11.4 (range, 5.4-63.5). Correlation between spectroscopic and all imaging-based fat-signal fractions was statistically significant (R(2) = 0.87-0.92; all P < .001). Mean dual-echo fat-signal fractions not corrected for T2* and multi-echo fat-signal fractions corrected for T2* significantly differed from spectroscopic fractions (both P < .01), but mean multi-echo fractions not corrected for T2* did not (P = .11). There was a small measurement bias of 0.5% (95% limits of agreement: -6.0%, 7.2%) compared with spectroscopic fractions. CONCLUSION: Large-volume image-based (dual-echo and multi-echo MR imaging) and spectroscopic fat-signal fractions agree well, thus allowing fast and accurate quantification of muscle fat content in patients with low back pain.[Abstract] [Full Text] [Related] [New Search]