These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enhanced photovoltaic properties of Nb₂O₅-coated TiO₂ 3D ordered porous electrodes in dye-sensitized solar cells. Author: Kim HN, Moon JH. Journal: ACS Appl Mater Interfaces; 2012 Nov; 4(11):5821-5. PubMed ID: 23153118. Abstract: This paper describes the use of Nb₂O₅-coated TiO₂ 3D ordered porous electrodes in dye-sensitized solar cells. We employed bilayer inverse opal structures as a backbone of 3D porous structures, and the number of Nb₂O₅ coatings was controlled, determining the concentration of Nb₂O₅ coating. XPS measurements confirmed the formation of Nb₂O₅. The uniformity of the Nb₂O₅ coating was characterized by elemental mapping using SEM and TEM measurements. Photovoltaic measurement on dye-sensitized solar cells (DSSCs) that incorporated Nb₂O₅/TiO₂ inverse opal electrodes yielded a maximum efficiency of 7.23% for a 3.3 wt % Nb₂O₅ coating on a TiO₂ IO structure. The Nb₂O₅ significantly increased the short-circuit current density (J(SC)). Electrochemical impedance spectroscopy was used to measure the J(SC), revealing an enhanced electron injection upon deposition of the Nb₂O₅ coating.[Abstract] [Full Text] [Related] [New Search]