These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular phylogenetic analyses based on the nuclear rRNA genes and the intron-exon structures of the nuSSU rRNA gene in Dictyocatenulata alba (anamorphic Ascomycota).
    Author: An KD, Degawa Y, Fujihara E, Mikawa T, Ohkuma M, Okada G.
    Journal: Fungal Biol; 2012 Nov; 116(11):1134-45. PubMed ID: 23153804.
    Abstract:
    Molecular phylogenies inferred from the nuclear small subunit rRNA gene (nuSSU), nuclear large subunit rRNA gene D1/D2 region (nuLSU), and ITS-5.8S rRNA gene (ITS) indicated that five cultures of the lichenized hyphomycete Dictyocatenulata alba isolated from Japan form a monophyletic clade with high bootstrap support, and a close relationship to the Ostropomycetidae (Lecanoromycetes, Pezizomycotina, Ascomycota). Insertion sequences were found in the nuSSU of all isolates [e.g., nine insertions in the strain JCM 5358 (Japan Collection of Microorganisms)], some of which were group I introns. Five new insertion positions were found among the D. alba isolates. Using BLAST, none of the insertion sequences of D. alba were closely related to those of fungi or other organisms deposited in public DNA databases. Insertion positions were similar in some isolates, and two positions were common to all isolates. Although all phylogenetic analyses based on nuSSU, nuLSU, and ITS revealed the monophyly of D. alba, the isolates were divided into two (in the nuSSU tree) or three (in the nuLSU and ITS trees) groups. Based on the phylogenetic analyses and the intron-exon structures, the five isolates identified as D. alba belong to three cryptic species and therefore D. alba should be considered a species complex. The very slow-growing, tough agar colonies of the isolates, the occurrence of the species on both slightly lichenized and nonlichenized surfaces of trees, or pebbles (rarely on soil), suggest that the members of the D. alba complex may be lichenized. The photobiont was not clearly identified in this study.
    [Abstract] [Full Text] [Related] [New Search]