These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phase transfer hollow fiber liquid phase microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of trace heavy metals in environmental and biological samples.
    Author: Guo X, He M, Chen B, Hu B.
    Journal: Talanta; 2012 Nov 15; 101():516-23. PubMed ID: 23158357.
    Abstract:
    A new method of phase transfer hollow fiber liquid phase microextraction (PT-HF-LPME) combined with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) has been developed for the determination of trace Co, Pd, Cd and Bi in environmental and biological samples. In PT-HF-LPME, an intermediate solvent (1-butanol) was added into the sample solution to ensure the maximum contact area between the target metal ions and the chelating reagent (8-hydroxyquinoline, 8-HQ), which accelerated the formation of 8-HQ-metal complexes and their subsequent extraction by extraction solvent (toluene). The experimental parameters affecting the extraction efficiency of PT-HF-LPME for the target metals were studied by simplex optimization and orthogonal array design (OAD) experiments. Under the optimized conditions, the enrichment factors for Co, Pd, Cd and Bi were 110, 393, 121 and 111-fold, respectively, the limits of detection (LODs, 3σ) ranged from 3.7 to 8.3 ng L(-1). The relative standard deviations (RSDs, c=0.5 ng mL(-1), n=7) were 8.7, 6.2, 12.4 and 12.9% for Co, Pd, Cd and Bi, respectively. To validate the accuracy of the proposed method, two Certified Reference Materials of GSBZ50009-88 Environment Water and GBW09103 Human Urine were analyzed, and the results obtained for Cd were in good agreement with the certified values. Finally, the developed method was successfully applied to the analysis of Co, Pd, Cd and Bi in lake water and human urine samples.
    [Abstract] [Full Text] [Related] [New Search]