These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pipernonaline from Piper longum Linn. induces ROS-mediated apoptosis in human prostate cancer PC-3 cells.
    Author: Lee W, Kim KY, Yu SN, Kim SH, Chun SS, Ji JH, Yu HS, Ahn SC.
    Journal: Biochem Biophys Res Commun; 2013 Jan 04; 430(1):406-12. PubMed ID: 23159637.
    Abstract:
    The antiproliferation effects of pipernonaline, a piperine derivative, were investigated on human prostate cancer PC-3 cells. It inhibited growth of androgen independent PC-3 and androgen dependent LNCaP prostate cells in a dose-dependent (30-90 μM) and time-dependent (24-48 h) manner. The growth inhibition of PC-3 cells was associated with sub-G(1) and G(0)/G(1) accumulation, confirmed by the down-regulation of CDK2, CDK4, cyclin D1 and cyclin E, which are correlated with G(1) phase of cell cycle. Pipernonaline up-regulated cleavage of procaspase-3/PARP, but did not change expression of proapoptotic bax and antiapoptotic bcl-2 proteins. Its caspase-3 activation was confirmed by the caspase-3 assay kit. In addition, pipernonaline caused the production of reactive oxygen species (ROS), increase of intracellular Ca(2+), and mitochondrial membrane depolarization, which these phenomena were reversed by N-acetylcysteine, a ROS scavenger. The results suggest that pipernonaline exhibits apoptotic properties through ROS production, which causes disruption of mitochondrial function and Ca(2+) homeostasis and leads to its downstream events including activation of caspase-3 and cleavage of PARP in PC-3 cells. This is the first report of pipernonaline toward the anticancer activity of prostate cancer cells, which provides a role for candidate agent as well as the molecular basis for human prostate cancer.
    [Abstract] [Full Text] [Related] [New Search]