These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Overexpression of OsRecQl4 and/or OsExo1 enhances DSB-induced homologous recombination in rice. Author: Kwon YI, Abe K, Osakabe K, Endo M, Nishizawa-Yokoi A, Saika H, Shimada H, Toki S. Journal: Plant Cell Physiol; 2012 Dec; 53(12):2142-52. PubMed ID: 23161853. Abstract: During homologous recombination (HR)-mediated DNA double-strand break (DSB) repair in eukaryotes, an initial step is the creation of a 3'-single-stranded DNA (ssDNA) overhang via resection of a 5' end. Rad51 polymerizes on this ssDNA to search for a homologous sequence, and the gapped sequence is then repaired using an undamaged homologous DNA strand as template. Recent studies in eukaryotes indicate that resection of the DSB site is promoted by the cooperative action of RecQ helicase family proteins: Bloom helicase (BLM) in mammals or Sgs1 in yeast, and exonuclease 1 (Exo1). However, the role of RecQ helicase and exonuclease during the 5'-resection process of HR in plant cells has not yet been defined. Here, we demonstrate that overexpression of rice proteins OsRecQl4 (BLM counterpart) and/or OsExo1 (Exo1 homolog) can enhance DSB processing, as evaluated by recombination substrate reporter lines in rice. These results could be applied to construct an efficient gene targeting system in rice.[Abstract] [Full Text] [Related] [New Search]