These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [The mechanical wound transcriptome of three-year-old Aquilaria sinensis].
    Author: Zhang Z, Gao ZH, Wei JH, Xu YH, Li Y, Yang Y, Meng H, Sui C, Wang MX.
    Journal: Yao Xue Xue Bao; 2012 Aug; 47(8):1106-10. PubMed ID: 23162911.
    Abstract:
    Chinese agarwood is formed in the aromatic resinous wood formed in Aquilaria sinensis (Lour.) Gilg (botanical family: Thymelaeaceae). Only when suffering stress of wound, etc, can A. sinensis produce sesquiterpenes etc. compounds of agarwood around wounds. However, little is known about how wound induced the biosynthesis pathway of sesquiterpenes. To reveal the molecular mechanism of wound-induced agarwood formation, RNA sequencing (RNA-seq) technology was used to investigate the profile of gene expression in A. sinensis treated by mechanical wounding and elucidate its functional gene. A total of 40,295 ESTs with an average read length of 305 bp were generated and 22 095 unigenes were formed by initial gene splicing. 61.6% of these unigenes (13 611) were annotated using BLAST searches against the SwissProt, KEGG, Nr and Nt databases. Twenty-six unigenes (encoding 7 enzymes) were found to be involved in sesquiterpene of agarwood biosynthesis by bioinformatic tools of Gene Ontology and KEGG. Novel genes that are potentially involved in sesquiterpenes biosynthesis were identified in A. sinensis, providing data for further sesquiterpenes biosynthesis pathway by molecular methods and the EST data establish a foundation for future studies in the molecular mechanisms of wound-induce agarwood formation in A. sinensis.
    [Abstract] [Full Text] [Related] [New Search]