These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of MMP-9 activity following hypoxic ischemia in the developing brain using a highly specific inhibitor. Author: Ranasinghe HS, Scheepens A, Sirimanne E, Mitchell MD, Williams CE, Fraser M. Journal: Dev Neurosci; 2012; 34(5):417-27. PubMed ID: 23171520. Abstract: Perinatal hypoxic ischemic (HI) brain injury is a leading cause of long-term neurological handicap in newborn babies. Recently, excessive activity of matrix metalloproteinases (MMPs), and in particular MMP-9, has been implicated in the aetiology of HI injuries to the immature brain. Our previous study suggested that MMP-9 may be involved in the development of the delayed injury processes following HI injury to the developing brain. Given this, we therefore propose that MMP-9 may be a useful target for rescue therapies in the injured developing brain. To address this, we chose to use SB-3CT, a highly selective inhibitor that is known to target only MMP-2 and MMP-9, to attenuate the elevated MMP-9 activity seen following HI injury to the developing brain. Twenty-one-day-old postnatal Wistar rats were subjected to unilateral carotid artery occlusion followed by exposure to hypoxia (8% oxygen for 1 h). SB-3CT (50 mg/kg body weight in 25% dimethyl sulphoxide/75% polyethylene glycol) or an equal volume of vehicle or saline diluent was then administered intraperitoneally at 2, 5 and 14 h following the insult. Gelatin zymography revealed that pro-MMP-9 levels were significantly reduced at 6 h following hypoxic ischaemia (p ≤ 0.05). However, our results showed that despite significantly inhibiting brain pro-MMP-9 activity after hypoxic ischaemia, SB-3CT failed to confer significant neuroprotection in postnatal day 21 rats 3 days after an HI insult. Further investigations are warranted using a recently reported selective water-soluble version of SB-3CT or another MMP-9 selective inhibitor to resolve the role of MMP-9 in the aetiology of HI injury in the developing brain.[Abstract] [Full Text] [Related] [New Search]