These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electron transfer at the cell-uranium interface in Geobacter spp. Author: Reguera G. Journal: Biochem Soc Trans; 2012 Dec 01; 40(6):1227-32. PubMed ID: 23176459. Abstract: The in situ stimulation of Fe(III) oxide reduction in the subsurface stimulates the growth of Geobacter spp. and the precipitation of U(VI) from groundwater. As with Fe(III) oxide reduction, the reduction of uranium by Geobacter spp. requires the expression of their conductive pili. The pili bind the soluble uranium and catalyse its extracellular reductive precipitation along the pili filaments as a mononuclear U(IV) complexed by carbon-containing ligands. Although most of the uranium is immobilized by the pili, some uranium deposits are also observed in discreet regions of the outer membrane, consistent with the participation of redox-active foci, presumably c-type cytochromes, in the extracellular reduction of uranium. It is unlikely that cytochromes released from the outer membrane could associate with the pili and contribute to the catalysis, because scanning tunnelling microscopy spectroscopy did not reveal any haem-specific electronic features in the pili, but, rather, showed topographic and electronic features intrinsic to the pilus shaft. Pili not only enhance the rate and extent of uranium reduction per cell, but also prevent the uranium from traversing the outer membrane and mineralizing the cell envelope. As a result, pili expression preserves the essential respiratory activities of the cell envelope and the cell's viability. Hence the results support a model in which the conductive pili function as the primary mechanism for the reduction of uranium and cellular protection in Geobacter spp.[Abstract] [Full Text] [Related] [New Search]