These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nerve growth cone migration onto Schwann cells involves the calcium-dependent adhesion molecule, N-cadherin. Author: Letourneau PC, Shattuck TA, Roche FK, Takeichi M, Lemmon V. Journal: Dev Biol; 1990 Apr; 138(2):430-42. PubMed ID: 2318342. Abstract: The role of calcium-dependent adhesion molecules in the migration of nerve growth cones onto the top of Schwann cells was probed by examination of sensory growth cone-Schwann cell interactions in medium containing either 1.0 mM Ca2+ or 0.1 mM Ca2+. In the presence of 1.0 mM Ca2+ growth cones rapidly migrated onto Schwann cells, spread, and remained for extended periods. However, in 0.1 mM Ca2+ growth cones still made frequent contacts with Schwann cells, but migration onto the upper cell surface was much reduced. This contrast in growth cone-Schwann cell interactions could be switched rapidly by changing the Ca2+ concentration of the culture medium. Growth cones of retinal neurons showed similar calcium-dependence in their migration onto Schwann cells. Antibodies to the calcium-dependent adhesion molecule, N-cadherin, also blocked growth cone migration onto Schwann cells, but antibodies to another neuronal adhesion molecule, L1, had no effect on growth cone-Schwann cell interactions. Immunocytochemical staining for N-cadherin and L1 indicated that growth cones and Schwann cells have N-cadherin on their surfaces, while L1 is present only on axons and growth cones. These results provide two kinds of evidence that N-cadherin is important in the initial interactions of growth cones and Schwann cells.[Abstract] [Full Text] [Related] [New Search]