These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Normal prions as a new target of cobalamin (vitamin B12) in rat central nervous system. Author: Scalabrino G, Veber D. Journal: Clin Chem Lab Med; 2013 Mar 01; 51(3):601-6. PubMed ID: 23183750. Abstract: The pathogenesis of cobalamin (Cbl)-deficient (Cbl-D) neuropathy and the role of normal prions (PrPcs) in myelin maintenance are both subjects of debate. We have demonstrated that Cbl deficiency damages myelin by increasing tumor necrosis factor (TNF)-α, and decreasing epidermal growth factor (EGF) levels in the rat central nervous system (CNS). It is known that TNF-α and EGF regulate PrPc expression in vitro, and that myelin vacuolation, reactive astrocytosis and microglial activation are common to rat Cbl-D neuropathy and some prion diseases. We have shown that Cbl deficiency leads to high levels of PrPcs [particularly the octapeptide repeat (OR) domains] in the rat CNS thereby damaging the spinal cord (SC) myelin, and that chronic intra-cerebroventricular treatment with anti-OR antibodies normalizes SC myelin morphology. We have also found that PrPc levels are increased in the SC of Cbl-D rats by the time the myelin lesions appear, and that this increase is mediated by excess myelinotoxic TNF-α and prevented by EGF treatment, which has proved to be as effective as Cbl in preventing Cbl deficiency-induced lesions. Cbl stimulates PrPc mRNA-related synthesis in Cbl-D SC and duodenum, two rat tissues that are severely affected by Cbl deficiency. New PrPc synthesis is a common effect of various myelinotrophic agents, two of which (EGF and anti-TNF-α antibodies) also stimulate PrPc mRNA-related synthesis in the SC of Cbl-D rats.[Abstract] [Full Text] [Related] [New Search]