These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Footprint mismatch in total cervical disc arthroplasty. Author: Thaler M, Hartmann S, Gstöttner M, Lechner R, Gabl M, Bach C. Journal: Eur Spine J; 2013 Apr; 22(4):759-65. PubMed ID: 23184184. Abstract: PURPOSE: Cervical disc arthroplasty has become a commonplace surgery for the treatment of cervical radiculopathy and myelopathy. Most manufacturers derive their implant dimensions from early published cadaver studies. Ideal footprint match of the prosthesis is essential for good surgical outcome. METHODS: We measured the dimensions of cervical vertebrae from computed tomography (CT) scans and to assess the accuracy of match achieved with the most common cervical disc prostheses [Bryan (Medtronic), Prestige LP (Medtronic), Discover (DePuy) Prodisc-C (Synthes)]. A total of 192 endplates in 24 patients (56.3 years) were assessed. The anterior-posterior and mediolateral diameters of the superior and inferior endplates were measured with a digital measuring system. RESULTS: Overall, 53.5 % of the largest device footprints were smaller in the anterior-posterior diameter and 51.1 % in the mediolateral diameter were smaller than cervical endplate diameters. For levels C5/C6 and C6/C7 an inappropriate size match was noted in 61.9 % as calculated from the anteroposterior diameter. Mismatch at the center mediolateral diameter was noted in 56.8 %. Of the endplates in the current study up to 58.1 % of C5/C6 and C6/C7, and up to 45.3 % of C3/C4 and C4/C5 were larger than the most frequently implanted cervical disc devices. CONCLUSION: Surgeons and manufacturers should be aware of the size mismatch in currently available cervical disc prostheses, which may endanger the safety and efficacy of the procedure. Undersizing the prosthetic device may lead to subsidence, loosening, heterotopic ossification and biomechanical failure caused by an incorrect center of rotation and load distribution, affecting the facet joints.[Abstract] [Full Text] [Related] [New Search]