These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Increased levels of monoamine-derived potential neurotoxins in fetal rat brain exposed to ethanol.
    Author: Mao J, Ma H, Xu Y, Su Y, Zhu H, Wang R, Lin F, Qing H, Deng Y.
    Journal: Neurochem Res; 2013 Feb; 38(2):356-63. PubMed ID: 23184185.
    Abstract:
    Pregnant SD rats were exposed to ethanol (25 % (v/v) ethanol at 1.0, 2.0 or 4.0 g/kg body weight from GD8 to GD20) to assess whether ethanol-derived acetaldehyde could interact with endogenous monoamine to generate tetrahydroisoquinoline or tetrahydro-beta-carboline in the fetuses. The fetal brain concentration of acetaldehyde increased remarkably after ethanol administration (2.6 times, 5.3 times and 7.8 times as compared to saline control in 1.0, 2.0 and 4.0 g/kg ethanol-treated groups, respectively) detected by HPLC with 2,4-dinitrophenylhydrazine derivatization. Compared to control, ethanol exposure induced the formation of 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol, Sal), N-methyl-salsolinol (NMSal) and 1-methyl-6-hydroxy-1,2,3,4-tetrahydro-beta-carboline (6-OH-MTHBC) in fetal rat brains. Determined by HPLC with electrochemical detector, the levels of dopamine and 5-hydroxytryptamine in whole fetal brain were not remarkably altered by ethanol treatment, while the levels of homovanillic acid and 5-hydroxyindole acetic acid in high dose (4.0 g/kg) of ethanol-treated rats were significantly decreased compared to that in the control animals. 4.0 g/kg ethanol administration inhibited the activity of mitochondrial monoamine oxidase (51.3 % as compared to control) and reduced the activity of respiratory chain complex I (61.2 % as compared to control). These results suggested that ethanol-induced alteration of monoamine metabolism and the accumulation of dopamine-derived catechol isoquinolines and 5-hydroxytryptamine-derived tetrahydro-beta-carbolines may play roles in the developmental dysfuction of monoaminergic neuronal systems.
    [Abstract] [Full Text] [Related] [New Search]