These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanistic target of rapamycin complex 1 (mTORC1)-mediated phosphorylation is governed by competition between substrates for interaction with raptor.
    Author: Dennis MD, Kimball SR, Jefferson LS.
    Journal: J Biol Chem; 2013 Jan 04; 288(1):10-9. PubMed ID: 23184952.
    Abstract:
    In this study, the interaction of mTORC1 with its downstream targets p70S6K1 and 4E-BP1 was evaluated in both mouse liver and mouse embryonic fibroblasts following combined disruption of the genes encoding 4E-BP1 and 4E-BP2. Phosphorylation of p70S6K1 was dramatically elevated in the livers of mice lacking 4E-BP1 and 4E-BP2 following feeding-induced activation of mTORC1. Immunoprecipitation of mTORC1 suggested that elevated phosphorylation was the result of enhanced interaction of p70S6K1 with raptor. These findings were extended to a cell culture system wherein loss of 4E-BP1 and 4E-BP2 resulted in elevated interaction of p70S6K1 with IGF1-induced activation of mTORC1 in conjunction with an enhanced rate of p70S6K1 phosphorylation at Thr-389. Furthermore, cotransfecting HA-p70S6K1 with 4E-BP1, but not 4E-BP1(F114A), reduced recovery of mTORC1 in HA-p70S6K1 immunoprecipitates. Together, these findings support the conclusion that, in the absence of 4E-BP proteins, mTORC1-mediated phosphorylation of p70S6K1 is elevated by a reduction in competition between the two substrates for interaction with raptor.
    [Abstract] [Full Text] [Related] [New Search]