These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Generation of transforming growth factor-alpha from the cell surface by an O-glycosylation-independent multistep process.
    Author: Teixido J, Wong ST, Lee DC, Massagué J.
    Journal: J Biol Chem; 1990 Apr 15; 265(11):6410-5. PubMed ID: 2318860.
    Abstract:
    The precursor for transforming growth factor-alpha (TGF-alpha) is a membrane glycoprotein that can establish contact with epidermal growth factor/TGF-alpha receptors on adjacent cells or can be cleaved to release TGF-alpha that diffuses into the medium. Cleavage of pro-TGF-alpha occurs at Ala/Leu-Ala/Leu-Ala-Val-Val sites located at each end of the mature TGF-alpha sequence. To characterize the cleavage process of pro-TGF-alpha and the role of glycosylation in this process, we have introduced a pro-TGF-alpha expression vector in wild type Chinese hamster ovary (CHO) cells and in the mutant CHO cell clone ldlD that has a reversible defect in protein glycosylation. Analysis of metabolically labeled and cell surface-labeled products immunoprecipitated with antibodies directed against the extracellular TGF-alpha sequence and the cytoplasmic pro-TGF-alpha C-terminal domain shows that cleavage of pro-TGF-alpha in wild type CHO cells occurs in two steps. Both processing steps occur after pro-TGF-alpha reaches the cell surface. In the first step, pro-TGF-alpha rapidly (t1/2 = 30 min) loses the amino-terminal segment that precedes the TGF-alpha sequence. In the second step, pro-TGF-alpha is cleaved at the carboxyl terminus of the TGF-alpha sequence releasing this factor into the medium. This second step is slow (t1/2 = 2 h). The action of pancreatic elastase added to CHO-TGF-alpha cells mimics the first step but not the second one. Synthesis, cell surface exposure, rate of cleavage, and generation of bioactive TGF-alpha in ldlD-TGF-alpha cells are not markedly affected by the lack of N-acetylgalactosamine-dependent protein O-glycosylation or galactose-dependent glycan chain modification. The results indicate that, despite their similarity in amino acid sequence, the two cleavage sites that flank TGF-alpha may be processed with different kinetics which can lead to retention of pro-TGF-alpha on the cell surface.
    [Abstract] [Full Text] [Related] [New Search]