These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Covalent binding of phenytoin to protein and modulation of phenytoin metabolism by thiols in A/J mouse liver microsomes.
    Author: Roy D, Snodgrass WR.
    Journal: J Pharmacol Exp Ther; 1990 Mar; 252(3):895-900. PubMed ID: 2319474.
    Abstract:
    The role of thiols (nonprotein and protein) in the metabolic activation of phenytoin was examined. In vitro phenytoin covalent binding and metabolite formation were determined in hepatic microsomes from A/J mice. Covalent binding of a phenytoin-reactive intermediate to microsomal protein was linear with respect to time, protein concentration and phenytoin concentration. Covalent binding was inhibited by inhibitors of cytochrome P-450. Inducers of cytochrome P-450 enhanced phenytoin covalent binding as follows: phenobarbital greater than 3-methylcholanthrene greater than saline-treated controls. Low molecular weight thiols (GSH, cysteine and cysteamine), a thiol generator (methylthiazolidine carboxylate), and thiol modifying agents (N-ethylmaleimide, mercuric chloride and diamide) significantly inhibited covalent binding. Amino acids other than cysteine did not decrease the covalent binding. Formation of the metabolites, para-hydroxyphenytoin and phenytoin dihydrodiol, was greater following preincubation with GSH or cysteine. In summary, protein thiol groups appear to be important sites for in vitro covalent binding of a reactive intermediate of phenytoin. These data suggest glutathione may protect membrane-bound enzymes responsible for phenytoin metabolism from attack by an electrophilic or free radical reactive intermediate of phenytoin and GSH may inactivate a phenytoin-reactive metabolite by formation of a putative glutathione conjugate.
    [Abstract] [Full Text] [Related] [New Search]