These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification and characterization of an inhibitor of haemopoietic stem cell proliferation.
    Author: Graham GJ, Wright EG, Hewick R, Wolpe SD, Wilkie NM, Donaldson D, Lorimore S, Pragnell IB.
    Journal: Nature; 1990 Mar 29; 344(6265):442-4. PubMed ID: 2320111.
    Abstract:
    The haemopoietic system has three main compartments: multi-potential stem cells, intermediate stage progenitor cells and mature cells. The availability of simple reproducible culture systems has made possible the characterization and purification of regulators of the progenitor cells, including colony-stimulating factors and interleukins. In contrast, our knowledge of the regulators involved in the control of stem cell proliferation is limited. The steady-state quiescent status of the haemopoietic stem cell compartment is thought to be controlled by locally acting regulatory elements present in the stromal microenvironment, but their purification has been hampered by the lack of suitable culture systems. We have recently developed a novel in vitro colony assay that detects a primitive cell (CFU-A) which has similar proliferative characteristics, in normal and regenerating bone marrow, to the CFU-S (haemopoietic stem cells, as defined by the spleen colony assay) and which responds to CFU-S-specific proliferation regulators. We have now used this assay to purify to homogeneity a macrophage-derived reversible inhibitor of haemopoietic stem cell proliferation (stem cell inhibitor, SCI). Antibody inhibition and sequence data indicate that SCI is identical to a previously described cytokine, macrophage inflammatory protein-1 alpha (MIP-1 alpha), and that SCI/MIP-1 alpha is functionally and antigenically identical to the CFU-S inhibitory activity obtained from primary cultures of normal bone marrow cells. The biological activities of SCI/MIP-1 alpha suggest that it is a primary negative regulator of stem cell proliferation and that it has important therapeutic applications in protecting haemopoietic stem cells from damage during cytotoxic therapies for cancer.
    [Abstract] [Full Text] [Related] [New Search]