These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Microfluidic beads-based immunosensor for sensitive detection of cancer biomarker proteins using multienzyme-nanoparticle amplification and quantum dots labels. Author: Zhang H, Liu L, Fu X, Zhu Z. Journal: Biosens Bioelectron; 2013 Apr 15; 42():23-30. PubMed ID: 23202325. Abstract: This study reports the development of a microfluidic beads-based immunosensor for sensitive detection of cancer biomarker α-fetoprotein (AFP) that uses multienzyme-nanoparticle amplification and quantum dots labels. This method utilizes microbeads functionalized with the capture antibodies (Ab₁) and modified electron rich proteins as sensing platform that was fabricated within a microfluidic channel, and uses gold nanoparticles (AuNPs) functionalized with the horseradish peroxidase (HRP) and the detection antibodies (Ab₂) as label. Greatly enhanced sensitivity for the cancer biomarker is based on a dual signal amplification strategy: first, the large surface area of Au nanoparticle carrier allows several binding events of HRP on each nanosphere. Enhanced sensitivity was achieved by introducing the multi-HRP-antibody functionalized AuNPs onto the surface of microbeads through "sandwich" immunoreactions and subsequently multiple biotin moieties could be deposited onto the surface of beads resulted from the oxidation of biotin-tyramine by hydrogen peroxide. Streptavidin-labeled quantum dots were then allowed to bind to the deposited biotin moieties and displayed the signal. Secondly, enhanced mass transport capability inherent from microfluidics leads to higher capture efficiency of targets because continuous flow within micro-channel delivers fresh analyte solution to the reaction site which maintains a high concentration gradient differential to enhance mass transport. Based on the dual signal amplification strategy, the developed microfluidic bead-based immunosensor could discriminate as low as 0.2 pg mL⁻¹ AFP in 10 μL of undiluted calf serum (0.2 fg/chip), and showed a 500-fold increase in detection limit compared to the off-chip test and 50-fold increase in detection limit compared to microfluidic beads-based immunoassay using single label HRP-Ab₂. The immunosensor showed acceptable repeatability and reproducibility. This microfluidic beads-based immunosensor is a promising platform for disease-related biomolecules at the lowest level at their earliest incidence.[Abstract] [Full Text] [Related] [New Search]