These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Author: Li M, Lin D, Zhu L. Journal: Environ Pollut; 2013 Feb; 173():97-102. PubMed ID: 23202638. Abstract: The dissolution of ZnO nanoparticles (nano-ZnO) plays an important role in the toxicity of nano-ZnO to the aquatic organisms. The effects of water chemistry such as pH, ionic components, and dissolved organic matter (DOM) on the dissolution of nano-ZnO and its toxicity to Escherichia coli (E. coli) were investigated in synthetic and natural water samples. The results showed that the toxicity of nano-ZnO to E. coli depended on not only free Zn(2+) but also the coexisting cations which could reduce the toxicity of Zn(2+). Increasing solution pH, HPO(4)(2), and DOM reduced the concentration of free Zn(2+) released from nano-ZnO, and thus lowered the toxicity of nano-ZnO. In addition, both Ca(2+) and Mg(2+) dramatically reduced the toxicity of Zn(2+) to E. coli. These results highlight the importance of water chemistry on the toxicity evaluation of nano-ZnO in natural waters.[Abstract] [Full Text] [Related] [New Search]