These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Complex conjugate artifact-free adaptive optics optical coherence tomography of in vivo human optic nerve head.
    Author: Kim DY, Werner JS, Zawadzki RJ.
    Journal: J Biomed Opt; 2012 Dec; 17(12):126005. PubMed ID: 23208216.
    Abstract:
    We acquired in vivo images of the human optic nerve head (ONH) using an adaptive optics-optical coherence tomography (AO-OCT) system. In order to improve imaging of the lamina cribrosa in the ONH with high lateral resolution and sensitivity, we implemented a complex conjugate artifact-free Fourier domain OCT (Fd-OCT) acquisition scheme with a reference arm-based phase shifting method. This allowed positioning of the lamina cribrosa structures near the zero path length difference where AO-OCT imaging achieves highest sensitivity. Implementation of our complex conjugate artifact removal (CCR) method required constant phase shifts between consecutive axial scans (A-scans), generated by continuous beam path-length changes from offsetting the pivot point of the scanning mirror placed in the reference arm. Fourier transform along the transverse axis and a filtering algorithm allowed reconstruction of CCR AO-OCT images. The suppression ratio of the mirror artifact was approximately 22 dB (at 18,000 A-scans per second acquisition speed) with a paperboard test target and an optimum phase-shift value. Finally, we reconstructed the three-dimensional structure of human ONH with enhanced depth range and sensitivity using CCR AO-OCT.
    [Abstract] [Full Text] [Related] [New Search]