These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Solvent and rotational relaxation of coumarin-153 and coumarin-480 in ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate) modified sodium 1,4-bis(2-ethylhexyl) sulfosuccinate (NaAOT) micelle.
    Author: Rao VG, Banerjee C, Mandal S, Ghosh S, Sarkar N.
    Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 102():371-8. PubMed ID: 23220680.
    Abstract:
    Understanding ion transport dynamics, structure of surfactant aggregates in ionic liquids or ionic liquid/water solutions are quite interesting and potentially important due to widespread applications of surfactant-based systems. In this manuscript we have investigated the effect of 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)) addition on solvent and rotational relaxation of coumarin-153 (C-153) and coumarin-480 (C-480) in aqueous solution of sodium 1,4-bis(2-ethylhexyl) sulfosuccinate (NaAOT) using steady state and picosecond time resolved fluorescence spectroscopy. The strong adsorption of the bmim(+) at the interface and the role of the ionic liquid particularly the cation bmim(+) in the modification of the interfacial geometry were probed by the analysis of decay parameters and the rotational relaxation parameters. Since the addition of the NaAOT in water-bmimBF(4) mixture above critical micellar concentration (48 mM, obtained from observing pyrene fluorescence) causes strong adsorption of the ionic liquid particularly the cation bmim(+), the average solvation time, particularly the slow component increases significantly. More importantly we have found the probe dependent solvation dynamics due to the different location of the probe molecules, C-153 and C-480. C-153 being hydrophobic in nature resides in the stern layer and the adsorption of the bmim(+) at the interface modifies stern layer more effectively. So we have observed more pronounced change in solvation dynamics in case of C-153 compared to that in case of C-480. The fluorescence anisotropy decays of the probe molecules were found to be biexponential in nature. The anisotropy decay was interpreted by using a model which consists of the wobbling (rotational) and translational diffusion of the dye coupled with the rotational motion of the micelle as a whole.
    [Abstract] [Full Text] [Related] [New Search]