These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bioactivation of N-arylhydroxamic acids by rat hepatic N-acetyltransferase. Detection of multiple enzyme forms by mechanism-based inactivation. Author: Wick MJ, Hanna PE. Journal: Biochem Pharmacol; 1990 Mar 15; 39(6):991-1003. PubMed ID: 2322300. Abstract: Enzymatic N,O-acyltransfer of carcinogenic N-arylhydroxamic acids such as N-hydroxy-2-acetylaminofluorene (N-OH-AAF) results in the production of reactive electrophiles that can bond covalently with nucleophiles and also can cause inactivation of acyltransferase activity in a mechanism-based manner. Incubation of partially purified rat hepatic N-acetyltransferases (NAT) with N-OH-AAF resulted in extensive inactivation of N-OH-AAF/4-aminoazobenzene (AAB) N,N-acetyltransferase and acetyl coenzyme A (AcCoA)/procainamide (PA) N-acetyltransferase activities, whereas AcCoA/p-aminobenzoic acid (PABA) N-acetyltransferase activity was inhibited only slightly. Affinity chromatography with Sepharose 6B 2-aminofluorene (2-AF) resulted in the separation of two NAT activities. NAT I primarily catalyzed the AcCoA-dependent acetylation of PABA; NAT II catalyzed, N,N-acetyltransfer (N-OH-AAF/AAB), AcCoA/PA N-acetyltransfer and N-OH-AAF N,O-acyltransfer (AHAT) activities. Most of the AcCoA/2-AF N-acetyltransferase activity eluted in the NAT II fraction. Results of inactivation experiments with N-OH-AAF and the NAT II fractions suggested that one NAT isozyme was responsible for catalyzing the N-OH-AAF/AAB, AcCoA/PA and N,O-acyltransfer reactions and that inactivation of NAT II correlated with the extent of covalent binding to protein. Further purification of the NAT II fractions by chromatofocusing resulted in a 1300-fold purification of the N-OH-AAF/AAB activity and the coelution of N-OH-AAF/AAB, AcCoA/PA and N,O-acyltransferase activities. These studies indicate that N,O-acyltransfer, arylhydroxamic acid-dependent N-acetylation of arylamines (N,N-acetyltransfer), and AcCoA-dependent N-acetylation of PA may be catalyzed by a common enzyme in rat liver, whereas a second enzyme is responsible for the AcCoA-dependent N-acetylation of PABA.[Abstract] [Full Text] [Related] [New Search]