These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: miR-148a regulates osteoclastogenesis by targeting V-maf musculoaponeurotic fibrosarcoma oncogene homolog B.
    Author: Cheng P, Chen C, He HB, Hu R, Zhou HD, Xie H, Zhu W, Dai RC, Wu XP, Liao EY, Luo XH.
    Journal: J Bone Miner Res; 2013 May; 28(5):1180-90. PubMed ID: 23225151.
    Abstract:
    MicroRNAs (miRNAs) play crucial roles in bone metabolism. In the present study, we found that miR-148a is dramatically upregulated during osteoclastic differentiation of circulating CD14+ peripheral blood mononuclear cells (PBMCs) induced by macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). Overexpression of miR-148a in CD14+ PBMCs promoted osteoclastogenesis, whereas inhibition of miR-148a attenuated osteoclastogenesis. V-maf musculoaponeurotic fibrosarcoma oncogene homolog B (MAFB) is a transcription factor negatively regulating RANKL-induced osteoclastogenesis. miR-148a directly targeted MAFB mRNA by binding to the 3' untranslated region (3'UTR) and repressed MAFB protein expression. In vivo, our study showed that silencing of miR-148a using a specific antagomir-inhibited bone resorption and increased bone mass in mice receiving ovariectomy (OVX) and in sham-operated control mice. Furthermore, our results showed that miR-148a levels significantly increased in CD14+ PBMCs from lupus patients and resulted in enhanced osteoclastogenesis, which contributed to the lower bone mineral density (BMD) in lupus patients compared with normal controls. Thus, our study provides a new insight into the roles of miRNAs in osteoclastogenesis, and contributes to a new therapeutic pathway for osteoporosis.
    [Abstract] [Full Text] [Related] [New Search]