These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cerebral perfusion, oxygenation and metabolism during exercise in young and elderly individuals. Author: Fisher JP, Hartwich D, Seifert T, Olesen ND, McNulty CL, Nielsen HB, van Lieshout JJ, Secher NH. Journal: J Physiol; 2013 Apr 01; 591(7):1859-70. PubMed ID: 23230234. Abstract: We evaluated cerebral perfusion, oxygenation and metabolism in 11 young (22 ± 1 years) and nine older (66 ± 2 years) individuals at rest and during cycling exercise at low (25% W(max)), moderate (50% Wmax), high (75% W(max)) and exhaustive (100% W(max)) workloads. Mean middle cerebral artery blood velocity (MCA V(mean)), mean arterial pressure (MAP), cardiac output (CO) and partial pressure of arterial carbon dioxide (P(aCO2)) were measured. Blood samples were obtained from the right internal jugular vein and brachial artery to determine concentration differences for oxygen (O2), glucose and lactate across the brain. The molar ratio between cerebral uptake of O2 versus carbohydrate (O2-carbohydrate index; O2/[glucose + 1/2 lactate]; OCI), the cerebral metabolic rate of O2 (CMRO2) and changes in mitochondrial O2 tension ( P(mitoO2)) were calculated. 100% W(max) was ~33% lower in the older group. Exercise increased MAP and CO in both groups (P < 0.05 vs. rest), but at each intensity MAP was higher and CO lower in the older group (P < 0.05). MCA V(mean), P(aCO2) and cerebral vascular conductance index (MCA V(mean)/MAP) were lower in the older group at each exercise intensity (P < 0.05). In contrast, young and older individuals exhibited similar increases in CMRO2 (by ~30 μmol (100 g(-1)) min(-1)), and decreases in OCI (by ~1.5) and (by ~10 mmHg) during exercise at 75% W(max). Thus, despite the older group having reduced cerebral perfusion and maximal exercise capacity, cerebral oxygenation and uptake of lactate and glucose are similar during exercise in young and older individuals.[Abstract] [Full Text] [Related] [New Search]