These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In vivo kinematics comparison of fixed- and mobile-bearing total knee arthroplasty during deep knee bending motion.
    Author: Shi X, Shen B, Yang J, Kang P, Zhou Z, Pei F.
    Journal: Knee Surg Sports Traumatol Arthrosc; 2014 Jul; 22(7):1612-8. PubMed ID: 23232786.
    Abstract:
    PURPOSE: The in vivo kinematics of fixed-bearing and mobile-bearing total knee prostheses remains unclear, particularly for knee flexion over 120°. The purpose of this study was to compare the in vivo kinematics of fixed-bearing and mobile-bearing posterior-stabilized prosthesis during deep knee bending with knee flexion exceeding 120° under weight-bearing conditions. METHODS: In vivo kinematics was analysed for 20 patients implanted with either a fixed-bearing posterior-stabilized or mobile-bearing posterior-stabilized prosthesis. Under fluoroscopic surveillance, each patient performed weight-bearing deep knee bending. Motion between each component was analysed using a two- to three-dimensional registration technique, which uses computer-assisted design models to reproduce the spatial positions of the femoral and tibial components from single-view fluoroscopic images. RESULTS: Patients who had fixed-bearing prostheses experienced posterior femoral rollback at a mean of 1.4 mm (SD 1.6) of the medial condyle, whereas patients who had mobile-bearing prostheses experienced 0.8 mm (SD 1.2). The posterior femoral rollback of the femoral lateral condyle in patients with a fixed-bearing prosthesis was a mean of 6.4 mm (SD 1.7) motion in the posterior direction, whereas patients who had a mobile-bearing prosthesis had 6.5 mm (SD 2.4) motion. The mean tibial internal rotation was 7.5° (SD 2.1) for fixed-bearing prosthesis and 9.2° (SD 3.2) for mobile-bearing prosthesis. CONCLUSIONS: The present results demonstrated that the fixed-bearing and mobile-bearing posterior-stabilized designs had similar posterior condylar translation and tibial axial rotation during weight-bearing deep knee flexion exceeding 120°.
    [Abstract] [Full Text] [Related] [New Search]