These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Garnet-to-perovskite transition in Gd3Sc2Ga3O12 at high pressure and high temperature. Author: Lin C, Liu J, Lin JF, Li X, Li Y, Zhang Q, Xiong L, Li R. Journal: Inorg Chem; 2013 Jan 07; 52(1):431-4. PubMed ID: 23240758. Abstract: The structural phase transition of gadolinium-scandium-gallium garnet (Gd(3)Sc(2)Ga(3)O(12), GSGG) has been studied at high pressure and high temperature using the synchrotron X-ray diffraction technique in a laser-heated diamond anvil cell. The GSGG garnet transformed to an orthorhombic perovskite structure at approximately 24 GPa after laser heating to 1500-2000 K. The garnet-to-perovskite phase transition is associated with an ∼8% volume reduction and an increase in the coordination number of the Ga(3+) or Sc(3+) ion. The orthorhombic perovskite GSGG has bulk modulus B(0) = 194(15) GPa with B(0)' = 5.3(8), exhibiting slightly less compression than the cubic garnet structure of GSGG with B(0) = 157(15) GPa and B(0)' = 6.5(10). Upon compression at room temperature, the cubic GSGG garnet became amorphous at ∼65 GPa. Coupled with the amorphous-to-perovskite phase transition in Y(3)Fe(5)O(12) and Gd(3)Ga(5)O(12) at high-pressure-temperature conditions, we conclude that amorphization should represent a new thermodynamic state resulting from hindrance of the garnet-to-perovskite phase transition, whereas the garnet-to-amorphous transition in rare-earth garnets should be kinetically hindered at room temperature.[Abstract] [Full Text] [Related] [New Search]