These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High-level production of a cold-active B-mannanase from Bacillus subtilis BS5 and its molecular cloning and expression. Author: Huang JL, Bao LX, Zou HY, Che SG, Wang GX. Journal: Mol Gen Mikrobiol Virusol; 2012; (4):14-7. PubMed ID: 23248847. Abstract: Mannanases can be useful in the food, feed, pulp and paper industries. In this research a Bacillus subtilis strain (named Bs5) which produced high-level beta-mannanase was isolated. Maximum level of beta-mannanase (1231.41 U/ml) was reached when Bacillus subtilis Bs5 was grown on konjac powder as the carbon source for nine hours at 32 degrees C. The beta-mannanase was a typical cold-active enzyme and its optimal temperature of 35 degrees C was the lowest among those of the known mannanases from bacteria. In addition, the optimal pH was 5.0 and much wide pH range from 3.0-8.0 was also observed in the beta-mannanase. These properties make the beta-mannanase more attractive for biotechnological applications. The DNA sequence coding the beta-mannanase was cloned and the open reading frame consisted of 1089 bp encoding 362 amino acids. A phylogenetic tree of the beta-mannanase based on the similarity of amino acid sequences revealed that the beta-mannanase formed a cluster with the beta-mannanases of Bacillus subtilis, which was separated from the mannanases of fungi and other bacteria. The beta-mannanase gene could be expressed in Escherichia coli and the recombinant beta-mannanase was characterized by Western blot. This study provided a new source of carbohydrate hydrolysis enzyme with novel characteristics from Bacillus subtilis.[Abstract] [Full Text] [Related] [New Search]