These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Single-cell imaging and spectroscopic analyses of Cr(VI) reduction on the surface of bacterial cells.
    Author: Wang Y, Sevinc PC, Belchik SM, Fredrickson J, Shi L, Lu HP.
    Journal: Langmuir; 2013 Jan 22; 29(3):950-6. PubMed ID: 23249294.
    Abstract:
    We investigate the single-cell reduction of toxic Cr(VI) by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), an important bioremediation process, using Raman spectroscopy and scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX). Our experiments indicate that the toxic, highly soluble Cr(VI) can be efficiently reduced to less toxic, nonsoluble Cr(2)O(3) nanoparticles by MR-1. Cr(2)O(3) is observed to emerge as nanoparticles adsorbed on the cell surface and its chemical nature is identified by EDX imaging and Raman spectroscopy. Co-localization of Cr(2)O(3) and cytochromes by EDX imaging and Raman spectroscopy suggests a terminal reductase role for MR-1 surface-exposed cytochromes MtrC and OmcA. Our experiments revealed that the cooperation of surface proteins OmcA and MtrC makes the reduction reaction most efficient, and the sequence of the reducing reactivity of MR-1 is wild type > single mutant ΔmtrC or mutant ΔomcA > double mutant (ΔomcA-ΔmtrC). Moreover, our results also suggest that direct microbial Cr(VI) reduction and Fe(II) (hematite)-mediated Cr(VI) reduction mechanisms may coexist in the reduction processes.
    [Abstract] [Full Text] [Related] [New Search]