These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular characterization of three novel chemokine receptors in rainbow trout (Oncorhynchus mykiss). Author: Dixon B, Luque A, Abós B, Castro R, González-Torres L, Tafalla C. Journal: Fish Shellfish Immunol; 2013 Feb; 34(2):641-51. PubMed ID: 23257202. Abstract: Chemokines signal through a family of seven-transmembrane domain G-coupled receptors in order to regulate both leukocyte mobilization and activate the recruited cells. Although many chemokines have been identified in rainbow trout (Oncorhynchus mykiss), only a few chemokine receptors have been reported to date. In this work, we have cloned three novel chemokine receptors in rainbow trout. One of these receptors seems to be a clear orthologue of CCR6, while the second one constitutes a novel CCR9 gene different from the previous CCR9 reported in this species. This gene, which we have designated as CCR9B, represents another lineage of fish CCR9 genes, not previously identified. Finally, a deeper phylogenetic analysis of the third novel chemokine receptor gene, which had been identified on the basis of sequence similarity to CCR3, constitutes a novel lineage of CCR receptors which has no equivalent in humans and that may be teleost-specific. We have designated this novel gene as CCR13, to avoid any possible ascription to mammalian genes. Further transcriptional studies revealed that CCR6 was constitutively transcribed in thymus, gills, hindgut and peripheral blood leukocytes (PBLs), while CCR9B was strongly transcribed in thymus and PBLs but also in spleen, gills, hindgut and brain at lower levels. CCR13, on the other hand, was strongly detected in spleen, head kidney and PBLs and faintly in thymus, gills, brain and gonad. The data provided constitutes a step forward the identification of novel chemokine receptors that may contribute to a future understanding of chemokine signalling in fish.[Abstract] [Full Text] [Related] [New Search]